mirror of
https://github.com/AvengeMedia/DankMaterialShell.git
synced 2026-01-27 15:02:50 -05:00
launcher: Dank Launcher V2 (beta)
- Aggregate plugins/extensions in new "all" tab - Quick tab actions - New tile mode for results - Plugins can enforce/require view mode, or set preferred default - Danksearch under "files" category
This commit is contained in:
245
quickshell/Modals/DankLauncherV2/Scorer.js
Normal file
245
quickshell/Modals/DankLauncherV2/Scorer.js
Normal file
@@ -0,0 +1,245 @@
|
||||
.pragma library
|
||||
|
||||
const Weights = {
|
||||
exactMatch: 10000,
|
||||
prefixMatch: 5000,
|
||||
wordBoundary: 1000,
|
||||
substring: 500,
|
||||
fuzzy: 100,
|
||||
frecency: 2000,
|
||||
typeBonus: {
|
||||
app: 1000,
|
||||
plugin: 900,
|
||||
file: 800,
|
||||
action: 600
|
||||
}
|
||||
}
|
||||
|
||||
function tokenize(text) {
|
||||
return text.toLowerCase().trim().split(/[\s\-_]+/).filter(function(w) { return w.length > 0 })
|
||||
}
|
||||
|
||||
function hasWordBoundaryMatch(text, query) {
|
||||
var textWords = tokenize(text)
|
||||
var queryWords = tokenize(query)
|
||||
|
||||
if (queryWords.length === 0) return false
|
||||
if (queryWords.length > textWords.length) return false
|
||||
|
||||
for (var i = 0; i <= textWords.length - queryWords.length; i++) {
|
||||
var allMatch = true
|
||||
for (var j = 0; j < queryWords.length; j++) {
|
||||
if (!textWords[i + j].startsWith(queryWords[j])) {
|
||||
allMatch = false
|
||||
break
|
||||
}
|
||||
}
|
||||
if (allMatch) return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
function levenshteinDistance(s1, s2) {
|
||||
var len1 = s1.length
|
||||
var len2 = s2.length
|
||||
var matrix = []
|
||||
|
||||
for (var i = 0; i <= len1; i++) {
|
||||
matrix[i] = [i]
|
||||
}
|
||||
for (var j = 0; j <= len2; j++) {
|
||||
matrix[0][j] = j
|
||||
}
|
||||
|
||||
for (var i = 1; i <= len1; i++) {
|
||||
for (var j = 1; j <= len2; j++) {
|
||||
var cost = s1[i - 1] === s2[j - 1] ? 0 : 1
|
||||
matrix[i][j] = Math.min(
|
||||
matrix[i - 1][j] + 1,
|
||||
matrix[i][j - 1] + 1,
|
||||
matrix[i - 1][j - 1] + cost
|
||||
)
|
||||
}
|
||||
}
|
||||
return matrix[len1][len2]
|
||||
}
|
||||
|
||||
function fuzzyScore(text, query) {
|
||||
var maxDistance = query.length === 3 ? 1 : query.length <= 6 ? 2 : 3
|
||||
var bestScore = 0
|
||||
|
||||
if (Math.abs(text.length - query.length) <= maxDistance) {
|
||||
var distance = levenshteinDistance(text, query)
|
||||
if (distance <= maxDistance) {
|
||||
var maxLen = Math.max(text.length, query.length)
|
||||
bestScore = 1 - (distance / maxLen)
|
||||
}
|
||||
}
|
||||
|
||||
var words = tokenize(text)
|
||||
for (var i = 0; i < words.length && bestScore < 0.8; i++) {
|
||||
if (Math.abs(words[i].length - query.length) > maxDistance) continue
|
||||
var wordDistance = levenshteinDistance(words[i], query)
|
||||
if (wordDistance <= maxDistance) {
|
||||
var wordMaxLen = Math.max(words[i].length, query.length)
|
||||
var score = 1 - (wordDistance / wordMaxLen)
|
||||
bestScore = Math.max(bestScore, score)
|
||||
}
|
||||
}
|
||||
|
||||
return bestScore
|
||||
}
|
||||
|
||||
function getTimeBucketWeight(daysSinceUsed) {
|
||||
for (var i = 0; i < TimeBuckets.length; i++) {
|
||||
if (daysSinceUsed <= TimeBuckets[i].maxDays) {
|
||||
return TimeBuckets[i].weight
|
||||
}
|
||||
}
|
||||
return 10
|
||||
}
|
||||
|
||||
function calculateTextScore(name, query) {
|
||||
if (name === query) return Weights.exactMatch
|
||||
if (name.startsWith(query)) return Weights.prefixMatch
|
||||
if (name.includes(query)) return Weights.substring
|
||||
if (hasWordBoundaryMatch(name, query)) return Weights.wordBoundary
|
||||
|
||||
if (query.length >= 3) {
|
||||
var fs = fuzzyScore(name, query)
|
||||
if (fs > 0) return fs * Weights.fuzzy
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
function score(item, query, frecencyData) {
|
||||
var typeBonus = Weights.typeBonus[item.type] || 0
|
||||
|
||||
if (!query || query.length === 0) {
|
||||
var usageCount = frecencyData ? frecencyData.usageCount : 0
|
||||
return typeBonus + (usageCount * 100)
|
||||
}
|
||||
|
||||
var name = (item.name || "").toLowerCase()
|
||||
var q = query.toLowerCase()
|
||||
|
||||
var textScore = calculateTextScore(name, q)
|
||||
|
||||
if (textScore === 0 && item.subtitle) {
|
||||
var subtitleScore = calculateTextScore(item.subtitle.toLowerCase(), q)
|
||||
textScore = subtitleScore * 0.5
|
||||
}
|
||||
|
||||
if (textScore === 0 && item.keywords) {
|
||||
for (var i = 0; i < item.keywords.length; i++) {
|
||||
var keywordScore = calculateTextScore(item.keywords[i].toLowerCase(), q)
|
||||
if (keywordScore > 0) {
|
||||
textScore = keywordScore * 0.3
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (textScore === 0) return 0
|
||||
|
||||
var usageBonus = frecencyData ? Math.min(frecencyData.usageCount * 10, Weights.frecency) : 0
|
||||
|
||||
return textScore + usageBonus + typeBonus
|
||||
}
|
||||
|
||||
function scoreItems(items, query, getFrecencyFn) {
|
||||
var scored = []
|
||||
|
||||
for (var i = 0; i < items.length; i++) {
|
||||
var item = items[i]
|
||||
var frecencyData = getFrecencyFn ? getFrecencyFn(item) : null
|
||||
var itemScore = score(item, query, frecencyData)
|
||||
|
||||
if (itemScore > 0 || !query || query.length === 0) {
|
||||
scored.push({
|
||||
item: item,
|
||||
score: itemScore
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
scored.sort(function(a, b) {
|
||||
return b.score - a.score
|
||||
})
|
||||
|
||||
return scored
|
||||
}
|
||||
|
||||
function groupBySection(scoredItems, sectionOrder, sortAlphabetically, maxPerSection) {
|
||||
var sections = {}
|
||||
var result = []
|
||||
var limit = maxPerSection || 50
|
||||
|
||||
for (var i = 0; i < sectionOrder.length; i++) {
|
||||
var sectionId = sectionOrder[i].id
|
||||
sections[sectionId] = {
|
||||
id: sectionId,
|
||||
title: sectionOrder[i].title,
|
||||
icon: sectionOrder[i].icon,
|
||||
priority: sectionOrder[i].priority,
|
||||
items: [],
|
||||
collapsed: false
|
||||
}
|
||||
}
|
||||
|
||||
for (var i = 0; i < scoredItems.length; i++) {
|
||||
var scoredItem = scoredItems[i]
|
||||
var item = scoredItem.item
|
||||
var sectionId = item.section || "apps"
|
||||
|
||||
if (sections[sectionId] && sections[sectionId].items.length < limit) {
|
||||
sections[sectionId].items.push(item)
|
||||
} else if (sections["apps"] && sections["apps"].items.length < limit) {
|
||||
sections["apps"].items.push(item)
|
||||
}
|
||||
}
|
||||
|
||||
for (var i = 0; i < sectionOrder.length; i++) {
|
||||
var section = sections[sectionOrder[i].id]
|
||||
if (section && section.items.length > 0) {
|
||||
if (sortAlphabetically && section.id === "apps") {
|
||||
section.items.sort(function(a, b) {
|
||||
return (a.name || "").localeCompare(b.name || "")
|
||||
})
|
||||
}
|
||||
result.push(section)
|
||||
}
|
||||
}
|
||||
|
||||
return result
|
||||
}
|
||||
|
||||
function flattenSections(sections) {
|
||||
var flat = []
|
||||
|
||||
for (var i = 0; i < sections.length; i++) {
|
||||
var section = sections[i]
|
||||
|
||||
flat.push({
|
||||
isHeader: true,
|
||||
section: section,
|
||||
sectionId: section.id,
|
||||
sectionIndex: i
|
||||
})
|
||||
|
||||
if (!section.collapsed) {
|
||||
for (var j = 0; j < section.items.length; j++) {
|
||||
flat.push({
|
||||
isHeader: false,
|
||||
item: section.items[j],
|
||||
sectionId: section.id,
|
||||
sectionIndex: i,
|
||||
indexInSection: j
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return flat
|
||||
}
|
||||
Reference in New Issue
Block a user