mirror of
https://github.com/AvengeMedia/DankMaterialShell.git
synced 2025-12-06 05:25:41 -05:00
Add wallpaper transition effects, courtesy of @Ly-Sec
- Just copied the shaders from noctalia since they're pretty awesome
This commit is contained in:
30
Shaders/frag/circled_image.frag
Normal file
30
Shaders/frag/circled_image.frag
Normal file
@@ -0,0 +1,30 @@
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec2 qt_TexCoord0;
|
||||
layout(location = 0) out vec4 fragColor;
|
||||
|
||||
layout(binding = 1) uniform sampler2D source;
|
||||
|
||||
layout(std140, binding = 0) uniform buf {
|
||||
mat4 qt_Matrix;
|
||||
float qt_Opacity;
|
||||
float imageOpacity;
|
||||
} ubuf;
|
||||
|
||||
void main() {
|
||||
// Center coordinates around (0, 0)
|
||||
vec2 uv = qt_TexCoord0 - 0.5;
|
||||
|
||||
// Calculate distance from center
|
||||
float distance = length(uv);
|
||||
|
||||
// Create circular mask - anything beyond radius 0.5 is transparent
|
||||
float mask = 1.0 - smoothstep(0.48, 0.52, distance);
|
||||
|
||||
// Sample the texture
|
||||
vec4 color = texture(source, qt_TexCoord0);
|
||||
|
||||
// Apply the circular mask and opacity
|
||||
float finalAlpha = color.a * mask * ubuf.imageOpacity * ubuf.qt_Opacity;
|
||||
fragColor = vec4(color.rgb * finalAlpha, finalAlpha);
|
||||
}
|
||||
56
Shaders/frag/rounded_image.frag
Normal file
56
Shaders/frag/rounded_image.frag
Normal file
@@ -0,0 +1,56 @@
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec2 qt_TexCoord0;
|
||||
layout(location = 0) out vec4 fragColor;
|
||||
|
||||
layout(binding = 1) uniform sampler2D source;
|
||||
|
||||
layout(std140, binding = 0) uniform buf {
|
||||
mat4 qt_Matrix;
|
||||
float qt_Opacity;
|
||||
// Custom properties with non-conflicting names
|
||||
float itemWidth;
|
||||
float itemHeight;
|
||||
float cornerRadius;
|
||||
float imageOpacity;
|
||||
} ubuf;
|
||||
|
||||
// Function to calculate the signed distance from a point to a rounded box
|
||||
float roundedBoxSDF(vec2 centerPos, vec2 boxSize, float radius) {
|
||||
vec2 d = abs(centerPos) - boxSize + radius;
|
||||
return length(max(d, 0.0)) + min(max(d.x, d.y), 0.0) - radius;
|
||||
}
|
||||
|
||||
void main() {
|
||||
// Get size from uniforms
|
||||
vec2 itemSize = vec2(ubuf.itemWidth, ubuf.itemHeight);
|
||||
float cornerRadius = ubuf.cornerRadius;
|
||||
float itemOpacity = ubuf.imageOpacity;
|
||||
|
||||
// Normalize coordinates to [-0.5, 0.5] range
|
||||
vec2 uv = qt_TexCoord0 - 0.5;
|
||||
|
||||
// Scale by aspect ratio to maintain uniform rounding
|
||||
vec2 aspectRatio = itemSize / max(itemSize.x, itemSize.y);
|
||||
uv *= aspectRatio;
|
||||
|
||||
// Calculate half size in normalized space
|
||||
vec2 halfSize = 0.5 * aspectRatio;
|
||||
|
||||
// Normalize the corner radius
|
||||
float normalizedRadius = cornerRadius / max(itemSize.x, itemSize.y);
|
||||
|
||||
// Calculate distance to rounded rectangle
|
||||
float distance = roundedBoxSDF(uv, halfSize, normalizedRadius);
|
||||
|
||||
// Create smooth alpha mask
|
||||
float smoothedAlpha = 1.0 - smoothstep(0.0, fwidth(distance), distance);
|
||||
|
||||
// Sample the texture
|
||||
vec4 color = texture(source, qt_TexCoord0);
|
||||
|
||||
// Apply the rounded mask and opacity
|
||||
// Make sure areas outside the rounded rect are completely transparent
|
||||
float finalAlpha = color.a * smoothedAlpha * itemOpacity * ubuf.qt_Opacity;
|
||||
fragColor = vec4(color.rgb * finalAlpha, finalAlpha);
|
||||
}
|
||||
122
Shaders/frag/wp_disc.frag
Normal file
122
Shaders/frag/wp_disc.frag
Normal file
@@ -0,0 +1,122 @@
|
||||
// ===== wp_disc.frag =====
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec2 qt_TexCoord0;
|
||||
layout(location = 0) out vec4 fragColor;
|
||||
|
||||
layout(binding = 1) uniform sampler2D source1; // Current wallpaper
|
||||
layout(binding = 2) uniform sampler2D source2; // Next wallpaper
|
||||
|
||||
layout(std140, binding = 0) uniform buf {
|
||||
mat4 qt_Matrix;
|
||||
float qt_Opacity;
|
||||
float progress; // Transition progress (0.0 to 1.0)
|
||||
float centerX; // X coordinate of disc center (0.0 to 1.0)
|
||||
float centerY; // Y coordinate of disc center (0.0 to 1.0)
|
||||
float smoothness; // Edge smoothness (0.0 to 1.0, 0=sharp, 1=very smooth)
|
||||
float aspectRatio; // Width / Height of the screen
|
||||
|
||||
// Fill mode parameters
|
||||
float fillMode; // 0=no(center), 1=crop(fill), 2=fit(contain), 3=stretch
|
||||
float imageWidth1; // Width of source1 image
|
||||
float imageHeight1; // Height of source1 image
|
||||
float imageWidth2; // Width of source2 image
|
||||
float imageHeight2; // Height of source2 image
|
||||
float screenWidth; // Screen width
|
||||
float screenHeight; // Screen height
|
||||
vec4 fillColor; // Fill color for empty areas (default: black)
|
||||
} ubuf;
|
||||
|
||||
// Calculate UV coordinates based on fill mode
|
||||
vec2 calculateUV(vec2 uv, float imgWidth, float imgHeight) {
|
||||
float imageAspect = imgWidth / imgHeight;
|
||||
float screenAspect = ubuf.screenWidth / ubuf.screenHeight;
|
||||
vec2 transformedUV = uv;
|
||||
|
||||
if (ubuf.fillMode < 0.5) {
|
||||
// Mode 0: no (center) - No resize, center image at original size
|
||||
// Convert UV to pixel coordinates, offset, then back to UV in image space
|
||||
vec2 screenPixel = uv * vec2(ubuf.screenWidth, ubuf.screenHeight);
|
||||
vec2 imageOffset = (vec2(ubuf.screenWidth, ubuf.screenHeight) - vec2(imgWidth, imgHeight)) * 0.5;
|
||||
vec2 imagePixel = screenPixel - imageOffset;
|
||||
transformedUV = imagePixel / vec2(imgWidth, imgHeight);
|
||||
}
|
||||
else if (ubuf.fillMode < 1.5) {
|
||||
// Mode 1: crop (fill/cover) - Fill screen, crop excess (default)
|
||||
float scale = max(ubuf.screenWidth / imgWidth, ubuf.screenHeight / imgHeight);
|
||||
vec2 scaledImageSize = vec2(imgWidth, imgHeight) * scale;
|
||||
vec2 offset = (scaledImageSize - vec2(ubuf.screenWidth, ubuf.screenHeight)) / scaledImageSize;
|
||||
transformedUV = uv * (vec2(1.0) - offset) + offset * 0.5;
|
||||
}
|
||||
else if (ubuf.fillMode < 2.5) {
|
||||
// Mode 2: fit (contain) - Fit inside screen, maintain aspect ratio
|
||||
float scale = min(ubuf.screenWidth / imgWidth, ubuf.screenHeight / imgHeight);
|
||||
vec2 scaledImageSize = vec2(imgWidth, imgHeight) * scale;
|
||||
vec2 offset = (vec2(ubuf.screenWidth, ubuf.screenHeight) - scaledImageSize) * 0.5;
|
||||
|
||||
// Convert screen UV to pixel coordinates
|
||||
vec2 screenPixel = uv * vec2(ubuf.screenWidth, ubuf.screenHeight);
|
||||
// Adjust for offset and scale
|
||||
vec2 imagePixel = (screenPixel - offset) / scale;
|
||||
// Convert back to UV coordinates in image space
|
||||
transformedUV = imagePixel / vec2(imgWidth, imgHeight);
|
||||
}
|
||||
// Mode 3: stretch - Use original UV (stretches to fit)
|
||||
// No transformation needed for stretch mode
|
||||
|
||||
return transformedUV;
|
||||
}
|
||||
|
||||
// Sample texture with fill mode and handle out-of-bounds
|
||||
vec4 sampleWithFillMode(sampler2D tex, vec2 uv, float imgWidth, float imgHeight) {
|
||||
vec2 transformedUV = calculateUV(uv, imgWidth, imgHeight);
|
||||
|
||||
// Check if UV is out of bounds
|
||||
if (transformedUV.x < 0.0 || transformedUV.x > 1.0 ||
|
||||
transformedUV.y < 0.0 || transformedUV.y > 1.0) {
|
||||
return ubuf.fillColor;
|
||||
}
|
||||
|
||||
return texture(tex, transformedUV);
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 uv = qt_TexCoord0;
|
||||
|
||||
// Sample textures with fill mode
|
||||
vec4 color1 = sampleWithFillMode(source1, uv, ubuf.imageWidth1, ubuf.imageHeight1);
|
||||
vec4 color2 = sampleWithFillMode(source2, uv, ubuf.imageWidth2, ubuf.imageHeight2);
|
||||
|
||||
// Map smoothness from 0.0-1.0 to 0.001-0.5 range
|
||||
// Using a non-linear mapping for better control
|
||||
float mappedSmoothness = mix(0.001, 0.5, ubuf.smoothness * ubuf.smoothness);
|
||||
|
||||
// Adjust UV coordinates to compensate for aspect ratio
|
||||
// This makes distances circular instead of elliptical
|
||||
vec2 adjustedUV = vec2(uv.x * ubuf.aspectRatio, uv.y);
|
||||
vec2 adjustedCenter = vec2(ubuf.centerX * ubuf.aspectRatio, ubuf.centerY);
|
||||
|
||||
// Calculate distance in aspect-corrected space
|
||||
float dist = distance(adjustedUV, adjustedCenter);
|
||||
|
||||
// Calculate the maximum possible distance (corner to corner)
|
||||
// This ensures the disc can cover the entire screen
|
||||
float maxDistX = max(ubuf.centerX * ubuf.aspectRatio,
|
||||
(1.0 - ubuf.centerX) * ubuf.aspectRatio);
|
||||
float maxDistY = max(ubuf.centerY, 1.0 - ubuf.centerY);
|
||||
float maxDist = length(vec2(maxDistX, maxDistY));
|
||||
|
||||
// Scale progress to cover the maximum distance
|
||||
// Add extra range for smoothness to ensure complete coverage
|
||||
// Adjust smoothness for aspect ratio to maintain consistent visual appearance
|
||||
float adjustedSmoothness = mappedSmoothness * max(1.0, ubuf.aspectRatio);
|
||||
float radius = ubuf.progress * (maxDist + adjustedSmoothness);
|
||||
|
||||
// Use smoothstep for a smooth edge transition
|
||||
float factor = smoothstep(radius - adjustedSmoothness, radius + adjustedSmoothness, dist);
|
||||
|
||||
// Mix the textures (factor = 0 inside disc, 1 outside)
|
||||
fragColor = mix(color2, color1, factor);
|
||||
|
||||
fragColor *= ubuf.qt_Opacity;
|
||||
}
|
||||
88
Shaders/frag/wp_fade.frag
Normal file
88
Shaders/frag/wp_fade.frag
Normal file
@@ -0,0 +1,88 @@
|
||||
// ===== wp_fade.frag =====
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec2 qt_TexCoord0;
|
||||
layout(location = 0) out vec4 fragColor;
|
||||
|
||||
layout(binding = 1) uniform sampler2D source1;
|
||||
layout(binding = 2) uniform sampler2D source2;
|
||||
|
||||
layout(std140, binding = 0) uniform buf {
|
||||
mat4 qt_Matrix;
|
||||
float qt_Opacity;
|
||||
float progress;
|
||||
|
||||
// Fill mode parameters
|
||||
float fillMode; // 0=no(center), 1=crop(fill), 2=fit(contain), 3=stretch
|
||||
float imageWidth1; // Width of source1 image
|
||||
float imageHeight1; // Height of source1 image
|
||||
float imageWidth2; // Width of source2 image
|
||||
float imageHeight2; // Height of source2 image
|
||||
float screenWidth; // Screen width
|
||||
float screenHeight; // Screen height
|
||||
vec4 fillColor; // Fill color for empty areas (default: black)
|
||||
} ubuf;
|
||||
|
||||
// Calculate UV coordinates based on fill mode
|
||||
vec2 calculateUV(vec2 uv, float imgWidth, float imgHeight) {
|
||||
float imageAspect = imgWidth / imgHeight;
|
||||
float screenAspect = ubuf.screenWidth / ubuf.screenHeight;
|
||||
vec2 transformedUV = uv;
|
||||
|
||||
if (ubuf.fillMode < 0.5) {
|
||||
// Mode 0: no (center) - No resize, center image at original size
|
||||
// Convert UV to pixel coordinates, offset, then back to UV in image space
|
||||
vec2 screenPixel = uv * vec2(ubuf.screenWidth, ubuf.screenHeight);
|
||||
vec2 imageOffset = (vec2(ubuf.screenWidth, ubuf.screenHeight) - vec2(imgWidth, imgHeight)) * 0.5;
|
||||
vec2 imagePixel = screenPixel - imageOffset;
|
||||
transformedUV = imagePixel / vec2(imgWidth, imgHeight);
|
||||
}
|
||||
else if (ubuf.fillMode < 1.5) {
|
||||
// Mode 1: crop (fill/cover) - Fill screen, crop excess (default)
|
||||
float scale = max(ubuf.screenWidth / imgWidth, ubuf.screenHeight / imgHeight);
|
||||
vec2 scaledImageSize = vec2(imgWidth, imgHeight) * scale;
|
||||
vec2 offset = (scaledImageSize - vec2(ubuf.screenWidth, ubuf.screenHeight)) / scaledImageSize;
|
||||
transformedUV = uv * (vec2(1.0) - offset) + offset * 0.5;
|
||||
}
|
||||
else if (ubuf.fillMode < 2.5) {
|
||||
// Mode 2: fit (contain) - Fit inside screen, maintain aspect ratio
|
||||
float scale = min(ubuf.screenWidth / imgWidth, ubuf.screenHeight / imgHeight);
|
||||
vec2 scaledImageSize = vec2(imgWidth, imgHeight) * scale;
|
||||
vec2 offset = (vec2(ubuf.screenWidth, ubuf.screenHeight) - scaledImageSize) * 0.5;
|
||||
|
||||
// Convert screen UV to pixel coordinates
|
||||
vec2 screenPixel = uv * vec2(ubuf.screenWidth, ubuf.screenHeight);
|
||||
// Adjust for offset and scale
|
||||
vec2 imagePixel = (screenPixel - offset) / scale;
|
||||
// Convert back to UV coordinates in image space
|
||||
transformedUV = imagePixel / vec2(imgWidth, imgHeight);
|
||||
}
|
||||
// Mode 3: stretch - Use original UV (stretches to fit)
|
||||
// No transformation needed for stretch mode
|
||||
|
||||
return transformedUV;
|
||||
}
|
||||
|
||||
// Sample texture with fill mode and handle out-of-bounds
|
||||
vec4 sampleWithFillMode(sampler2D tex, vec2 uv, float imgWidth, float imgHeight) {
|
||||
vec2 transformedUV = calculateUV(uv, imgWidth, imgHeight);
|
||||
|
||||
// Check if UV is out of bounds
|
||||
if (transformedUV.x < 0.0 || transformedUV.x > 1.0 ||
|
||||
transformedUV.y < 0.0 || transformedUV.y > 1.0) {
|
||||
return ubuf.fillColor;
|
||||
}
|
||||
|
||||
return texture(tex, transformedUV);
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 uv = qt_TexCoord0;
|
||||
|
||||
// Sample textures with fill mode
|
||||
vec4 color1 = sampleWithFillMode(source1, uv, ubuf.imageWidth1, ubuf.imageHeight1);
|
||||
vec4 color2 = sampleWithFillMode(source2, uv, ubuf.imageWidth2, ubuf.imageHeight2);
|
||||
|
||||
// Mix the two textures based on progress value
|
||||
fragColor = mix(color1, color2, ubuf.progress) * ubuf.qt_Opacity;
|
||||
}
|
||||
203
Shaders/frag/wp_stripes.frag
Normal file
203
Shaders/frag/wp_stripes.frag
Normal file
@@ -0,0 +1,203 @@
|
||||
// ===== wp_stripes.frag =====
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec2 qt_TexCoord0;
|
||||
layout(location = 0) out vec4 fragColor;
|
||||
|
||||
layout(binding = 1) uniform sampler2D source1; // Current wallpaper
|
||||
layout(binding = 2) uniform sampler2D source2; // Next wallpaper
|
||||
|
||||
layout(std140, binding = 0) uniform buf {
|
||||
mat4 qt_Matrix;
|
||||
float qt_Opacity;
|
||||
float progress; // Transition progress (0.0 to 1.0)
|
||||
float stripeCount; // Number of stripes (default 12.0)
|
||||
float angle; // Angle of stripes in degrees (default 30.0)
|
||||
float smoothness; // Edge smoothness (0.0 to 1.0, 0=sharp, 1=very smooth)
|
||||
float aspectRatio; // Width / Height of the screen
|
||||
|
||||
// Fill mode parameters
|
||||
float fillMode; // 0=no(center), 1=crop(fill), 2=fit(contain), 3=stretch
|
||||
float imageWidth1; // Width of source1 image
|
||||
float imageHeight1; // Height of source1 image
|
||||
float imageWidth2; // Width of source2 image
|
||||
float imageHeight2; // Height of source2 image
|
||||
float screenWidth; // Screen width
|
||||
float screenHeight; // Screen height
|
||||
vec4 fillColor; // Fill color for empty areas (default: black)
|
||||
} ubuf;
|
||||
|
||||
// Calculate UV coordinates based on fill mode
|
||||
vec2 calculateUV(vec2 uv, float imgWidth, float imgHeight) {
|
||||
float imageAspect = imgWidth / imgHeight;
|
||||
float screenAspect = ubuf.screenWidth / ubuf.screenHeight;
|
||||
vec2 transformedUV = uv;
|
||||
|
||||
if (ubuf.fillMode < 0.5) {
|
||||
// Mode 0: no (center) - No resize, center image at original size
|
||||
// Convert UV to pixel coordinates, offset, then back to UV in image space
|
||||
vec2 screenPixel = uv * vec2(ubuf.screenWidth, ubuf.screenHeight);
|
||||
vec2 imageOffset = (vec2(ubuf.screenWidth, ubuf.screenHeight) - vec2(imgWidth, imgHeight)) * 0.5;
|
||||
vec2 imagePixel = screenPixel - imageOffset;
|
||||
transformedUV = imagePixel / vec2(imgWidth, imgHeight);
|
||||
}
|
||||
else if (ubuf.fillMode < 1.5) {
|
||||
// Mode 1: crop (fill/cover) - Fill screen, crop excess (default)
|
||||
float scale = max(ubuf.screenWidth / imgWidth, ubuf.screenHeight / imgHeight);
|
||||
vec2 scaledImageSize = vec2(imgWidth, imgHeight) * scale;
|
||||
vec2 offset = (scaledImageSize - vec2(ubuf.screenWidth, ubuf.screenHeight)) / scaledImageSize;
|
||||
transformedUV = uv * (vec2(1.0) - offset) + offset * 0.5;
|
||||
}
|
||||
else if (ubuf.fillMode < 2.5) {
|
||||
// Mode 2: fit (contain) - Fit inside screen, maintain aspect ratio
|
||||
float scale = min(ubuf.screenWidth / imgWidth, ubuf.screenHeight / imgHeight);
|
||||
vec2 scaledImageSize = vec2(imgWidth, imgHeight) * scale;
|
||||
vec2 offset = (vec2(ubuf.screenWidth, ubuf.screenHeight) - scaledImageSize) * 0.5;
|
||||
|
||||
// Convert screen UV to pixel coordinates
|
||||
vec2 screenPixel = uv * vec2(ubuf.screenWidth, ubuf.screenHeight);
|
||||
// Adjust for offset and scale
|
||||
vec2 imagePixel = (screenPixel - offset) / scale;
|
||||
// Convert back to UV coordinates in image space
|
||||
transformedUV = imagePixel / vec2(imgWidth, imgHeight);
|
||||
}
|
||||
// Mode 3: stretch - Use original UV (stretches to fit)
|
||||
// No transformation needed for stretch mode
|
||||
|
||||
return transformedUV;
|
||||
}
|
||||
|
||||
// Sample texture with fill mode and handle out-of-bounds
|
||||
vec4 sampleWithFillMode(sampler2D tex, vec2 uv, float imgWidth, float imgHeight) {
|
||||
vec2 transformedUV = calculateUV(uv, imgWidth, imgHeight);
|
||||
|
||||
// Check if UV is out of bounds
|
||||
if (transformedUV.x < 0.0 || transformedUV.x > 1.0 ||
|
||||
transformedUV.y < 0.0 || transformedUV.y > 1.0) {
|
||||
return ubuf.fillColor;
|
||||
}
|
||||
|
||||
return texture(tex, transformedUV);
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 uv = qt_TexCoord0;
|
||||
|
||||
// Sample textures with fill mode
|
||||
vec4 color1 = sampleWithFillMode(source1, uv, ubuf.imageWidth1, ubuf.imageHeight1);
|
||||
vec4 color2 = sampleWithFillMode(source2, uv, ubuf.imageWidth2, ubuf.imageHeight2);
|
||||
|
||||
// Map smoothness from 0.0-1.0 to 0.001-0.3 range
|
||||
// Using a non-linear mapping for better control at low values
|
||||
float mappedSmoothness = mix(0.001, 0.3, ubuf.smoothness * ubuf.smoothness);
|
||||
|
||||
// Use values directly without forcing defaults
|
||||
float stripes = (ubuf.stripeCount > 0.0) ? ubuf.stripeCount : 12.0;
|
||||
float angleRad = radians(ubuf.angle);
|
||||
float edgeSmooth = mappedSmoothness;
|
||||
|
||||
// Create a coordinate system for stripes based on angle
|
||||
// At 0°: vertical stripes (divide by x)
|
||||
// At 45°: diagonal stripes
|
||||
// At 90°: horizontal stripes (divide by y)
|
||||
|
||||
// Transform coordinates based on angle
|
||||
float cosA = cos(angleRad);
|
||||
float sinA = sin(angleRad);
|
||||
|
||||
// Project the UV position onto the stripe direction
|
||||
// This gives us the position along the stripe direction
|
||||
float stripeCoord = uv.x * cosA + uv.y * sinA;
|
||||
|
||||
// Perpendicular coordinate (for edge movement)
|
||||
float perpCoord = -uv.x * sinA + uv.y * cosA;
|
||||
|
||||
// Calculate the range of perpCoord based on angle
|
||||
// This determines how far edges need to travel to fully cover the screen
|
||||
float minPerp = min(min(0.0 * -sinA + 0.0 * cosA, 1.0 * -sinA + 0.0 * cosA),
|
||||
min(0.0 * -sinA + 1.0 * cosA, 1.0 * -sinA + 1.0 * cosA));
|
||||
float maxPerp = max(max(0.0 * -sinA + 0.0 * cosA, 1.0 * -sinA + 0.0 * cosA),
|
||||
max(0.0 * -sinA + 1.0 * cosA, 1.0 * -sinA + 1.0 * cosA));
|
||||
|
||||
// Determine which stripe we're in
|
||||
float stripePos = stripeCoord * stripes;
|
||||
int stripeIndex = int(floor(stripePos));
|
||||
|
||||
// Determine if this is an odd or even stripe
|
||||
bool isOddStripe = mod(float(stripeIndex), 2.0) != 0.0;
|
||||
|
||||
// Calculate the progress for this specific stripe with wave delay
|
||||
// Use absolute stripe position for consistent delay across all stripes
|
||||
float normalizedStripePos = clamp(stripePos / stripes, 0.0, 1.0);
|
||||
|
||||
// Increased delay and better distribution
|
||||
float maxDelay = 0.1;
|
||||
float stripeDelay = normalizedStripePos * maxDelay;
|
||||
|
||||
// Better progress mapping that uses the full 0.0-1.0 range
|
||||
// Map progress so that:
|
||||
// - First stripe starts at progress = 0.0
|
||||
// - Last stripe finishes at progress = 1.0
|
||||
float stripeProgress;
|
||||
if (ubuf.progress <= stripeDelay) {
|
||||
stripeProgress = 0.0;
|
||||
} else if (ubuf.progress >= (stripeDelay + (1.0 - maxDelay))) {
|
||||
stripeProgress = 1.0;
|
||||
} else {
|
||||
// Scale the progress within the active window for this stripe
|
||||
float activeStart = stripeDelay;
|
||||
float activeEnd = stripeDelay + (1.0 - maxDelay);
|
||||
stripeProgress = (ubuf.progress - activeStart) / (activeEnd - activeStart);
|
||||
}
|
||||
|
||||
// Use gentler easing curve
|
||||
stripeProgress = stripeProgress * stripeProgress * (3.0 - 2.0 * stripeProgress); // Smootherstep instead of smoothstep
|
||||
|
||||
// Use the perpendicular coordinate for edge comparison
|
||||
float yPos = perpCoord;
|
||||
|
||||
// Calculate edge position for this stripe
|
||||
// Use the actual perpendicular coordinate range for this angle
|
||||
float perpRange = maxPerp - minPerp;
|
||||
float margin = edgeSmooth * 2.0; // Simplified margin calculation
|
||||
float edgePosition;
|
||||
if (isOddStripe) {
|
||||
// Odd stripes: edge moves from max to min
|
||||
edgePosition = maxPerp + margin - stripeProgress * (perpRange + margin * 2.0);
|
||||
} else {
|
||||
// Even stripes: edge moves from min to max
|
||||
edgePosition = minPerp - margin + stripeProgress * (perpRange + margin * 2.0);
|
||||
}
|
||||
|
||||
// Determine which wallpaper to show based on rotated position
|
||||
float mask;
|
||||
if (isOddStripe) {
|
||||
// Odd stripes reveal new wallpaper from bottom
|
||||
mask = smoothstep(edgePosition - edgeSmooth, edgePosition + edgeSmooth, yPos);
|
||||
} else {
|
||||
// Even stripes reveal new wallpaper from top
|
||||
mask = 1.0 - smoothstep(edgePosition - edgeSmooth, edgePosition + edgeSmooth, yPos);
|
||||
}
|
||||
|
||||
// Mix the wallpapers
|
||||
fragColor = mix(color1, color2, mask);
|
||||
|
||||
// Force exact values at start and end to prevent any bleed-through
|
||||
if (ubuf.progress <= 0.0) {
|
||||
fragColor = color1; // Only show old wallpaper at start
|
||||
} else if (ubuf.progress >= 1.0) {
|
||||
fragColor = color2; // Only show new wallpaper at end
|
||||
} else {
|
||||
// Add manga-style edge shadow only during transition
|
||||
float edgeDist = abs(yPos - edgePosition);
|
||||
float shadowStrength = 1.0 - smoothstep(0.0, edgeSmooth * 2.5, edgeDist);
|
||||
shadowStrength *= 0.2 * (1.0 - abs(stripeProgress - 0.5) * 2.0);
|
||||
fragColor.rgb *= (1.0 - shadowStrength);
|
||||
|
||||
// Add slight vignette during transition for dramatic effect
|
||||
float vignette = 1.0 - ubuf.progress * 0.1 * (1.0 - abs(stripeProgress - 0.5) * 2.0);
|
||||
fragColor.rgb *= vignette;
|
||||
}
|
||||
|
||||
fragColor *= ubuf.qt_Opacity;
|
||||
}
|
||||
127
Shaders/frag/wp_wipe.frag
Normal file
127
Shaders/frag/wp_wipe.frag
Normal file
@@ -0,0 +1,127 @@
|
||||
// ===== wp_wipe.frag =====
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec2 qt_TexCoord0;
|
||||
layout(location = 0) out vec4 fragColor;
|
||||
|
||||
layout(binding = 1) uniform sampler2D source1; // Current wallpaper
|
||||
layout(binding = 2) uniform sampler2D source2; // Next wallpaper
|
||||
|
||||
layout(std140, binding = 0) uniform buf {
|
||||
mat4 qt_Matrix;
|
||||
float qt_Opacity;
|
||||
float progress; // Transition progress (0.0 to 1.0)
|
||||
float direction; // 0=left, 1=right, 2=up, 3=down
|
||||
float smoothness; // Edge smoothness (0.0 to 1.0, 0=sharp, 1=very smooth)
|
||||
|
||||
// Fill mode parameters
|
||||
float fillMode; // 0=no(center), 1=crop(fill), 2=fit(contain), 3=stretch
|
||||
float imageWidth1; // Width of source1 image
|
||||
float imageHeight1; // Height of source1 image
|
||||
float imageWidth2; // Width of source2 image
|
||||
float imageHeight2; // Height of source2 image
|
||||
float screenWidth; // Screen width
|
||||
float screenHeight; // Screen height
|
||||
vec4 fillColor; // Fill color for empty areas (default: black)
|
||||
} ubuf;
|
||||
|
||||
// Calculate UV coordinates based on fill mode
|
||||
vec2 calculateUV(vec2 uv, float imgWidth, float imgHeight) {
|
||||
float imageAspect = imgWidth / imgHeight;
|
||||
float screenAspect = ubuf.screenWidth / ubuf.screenHeight;
|
||||
vec2 transformedUV = uv;
|
||||
|
||||
if (ubuf.fillMode < 0.5) {
|
||||
// Mode 0: no (center) - No resize, center image at original size
|
||||
// Convert UV to pixel coordinates, offset, then back to UV in image space
|
||||
vec2 screenPixel = uv * vec2(ubuf.screenWidth, ubuf.screenHeight);
|
||||
vec2 imageOffset = (vec2(ubuf.screenWidth, ubuf.screenHeight) - vec2(imgWidth, imgHeight)) * 0.5;
|
||||
vec2 imagePixel = screenPixel - imageOffset;
|
||||
transformedUV = imagePixel / vec2(imgWidth, imgHeight);
|
||||
}
|
||||
else if (ubuf.fillMode < 1.5) {
|
||||
// Mode 1: crop (fill/cover) - Fill screen, crop excess (default)
|
||||
float scale = max(ubuf.screenWidth / imgWidth, ubuf.screenHeight / imgHeight);
|
||||
vec2 scaledImageSize = vec2(imgWidth, imgHeight) * scale;
|
||||
vec2 offset = (scaledImageSize - vec2(ubuf.screenWidth, ubuf.screenHeight)) / scaledImageSize;
|
||||
transformedUV = uv * (vec2(1.0) - offset) + offset * 0.5;
|
||||
}
|
||||
else if (ubuf.fillMode < 2.5) {
|
||||
// Mode 2: fit (contain) - Fit inside screen, maintain aspect ratio
|
||||
float scale = min(ubuf.screenWidth / imgWidth, ubuf.screenHeight / imgHeight);
|
||||
vec2 scaledImageSize = vec2(imgWidth, imgHeight) * scale;
|
||||
vec2 offset = (vec2(ubuf.screenWidth, ubuf.screenHeight) - scaledImageSize) * 0.5;
|
||||
|
||||
// Convert screen UV to pixel coordinates
|
||||
vec2 screenPixel = uv * vec2(ubuf.screenWidth, ubuf.screenHeight);
|
||||
// Adjust for offset and scale
|
||||
vec2 imagePixel = (screenPixel - offset) / scale;
|
||||
// Convert back to UV coordinates in image space
|
||||
transformedUV = imagePixel / vec2(imgWidth, imgHeight);
|
||||
}
|
||||
// Mode 3: stretch - Use original UV (stretches to fit)
|
||||
// No transformation needed for stretch mode
|
||||
|
||||
return transformedUV;
|
||||
}
|
||||
|
||||
// Sample texture with fill mode and handle out-of-bounds
|
||||
vec4 sampleWithFillMode(sampler2D tex, vec2 uv, float imgWidth, float imgHeight) {
|
||||
vec2 transformedUV = calculateUV(uv, imgWidth, imgHeight);
|
||||
|
||||
// Check if UV is out of bounds
|
||||
if (transformedUV.x < 0.0 || transformedUV.x > 1.0 ||
|
||||
transformedUV.y < 0.0 || transformedUV.y > 1.0) {
|
||||
return ubuf.fillColor;
|
||||
}
|
||||
|
||||
return texture(tex, transformedUV);
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 uv = qt_TexCoord0;
|
||||
|
||||
// Sample textures with fill mode
|
||||
vec4 color1 = sampleWithFillMode(source1, uv, ubuf.imageWidth1, ubuf.imageHeight1);
|
||||
vec4 color2 = sampleWithFillMode(source2, uv, ubuf.imageWidth2, ubuf.imageHeight2);
|
||||
|
||||
// Map smoothness from 0.0-1.0 to 0.001-0.5 range
|
||||
// Using a non-linear mapping for better control
|
||||
float mappedSmoothness = mix(0.001, 0.5, ubuf.smoothness * ubuf.smoothness);
|
||||
|
||||
float edge = 0.0;
|
||||
float factor = 0.0;
|
||||
|
||||
// Extend the progress range to account for smoothness
|
||||
// This ensures the transition completes fully at the edges
|
||||
float extendedProgress = ubuf.progress * (1.0 + 2.0 * mappedSmoothness) - mappedSmoothness;
|
||||
|
||||
// Calculate edge position based on direction
|
||||
// As progress goes from 0 to 1, we reveal source2 (new wallpaper)
|
||||
if (ubuf.direction < 0.5) {
|
||||
// Wipe from right to left (new image enters from right)
|
||||
edge = 1.0 - extendedProgress;
|
||||
factor = smoothstep(edge - mappedSmoothness, edge + mappedSmoothness, uv.x);
|
||||
fragColor = mix(color1, color2, factor);
|
||||
}
|
||||
else if (ubuf.direction < 1.5) {
|
||||
// Wipe from left to right (new image enters from left)
|
||||
edge = extendedProgress;
|
||||
factor = smoothstep(edge - mappedSmoothness, edge + mappedSmoothness, uv.x);
|
||||
fragColor = mix(color2, color1, factor);
|
||||
}
|
||||
else if (ubuf.direction < 2.5) {
|
||||
// Wipe from bottom to top (new image enters from bottom)
|
||||
edge = 1.0 - extendedProgress;
|
||||
factor = smoothstep(edge - mappedSmoothness, edge + mappedSmoothness, uv.y);
|
||||
fragColor = mix(color1, color2, factor);
|
||||
}
|
||||
else {
|
||||
// Wipe from top to bottom (new image enters from top)
|
||||
edge = extendedProgress;
|
||||
factor = smoothstep(edge - mappedSmoothness, edge + mappedSmoothness, uv.y);
|
||||
fragColor = mix(color2, color1, factor);
|
||||
}
|
||||
|
||||
fragColor *= ubuf.qt_Opacity;
|
||||
}
|
||||
Reference in New Issue
Block a user